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The present work proposes and assesses a methodology based on incompressible computational fluid dynamics

simulations to study the acoustic behavior of Helmholtz resonators under a large range of excitation amplitudes. It

constitutes an alternative approach to themorewidespread one based on compressible flow simulations to analyze the

nonlinear regime of Helmholtz resonators. In the presentmethodology, the resonator is decomposed into its twomain

components: an assumed incompressible orifice neck and a compressible backing volume. The transfer impedance of

the single orifice is obtained bymeans of an incompressible solver of the flow equations without turbulencemodeling,

whereas an analytical model accounts for the compliance of the gas in the backing cavity. The proposedmethodology

is compared for validation purposes to both numerical results of the full compressible equations and experimental

data for the complete resonator at different sound pressure levels. A good agreement between the results of the two

numerical approaches could be achieved. Numerical results match also fairly well with experimental data, but a

systematic overprediction of the resistance by simulations is observed. Accounting for the presence of microrounded

edges, presumably present due to manufacturing processes, allows a better agreement between numerical and

experimental results.

Nomenclature

Af, Af;o = input amplitudes for compressible simulations,m∕s
Au = input amplitudes for incompressible simulations,

m∕s
c = speed of sound, m∕s
dcav = back-cavity diameter, m
do = orifice diameter, m
Fr, Gr = Riemann invariants, m∕s
fH;lin = Helmholtz resonance frequency in linear regime, Hz
He = Helmholtz number
lo = orifice thickness, m
lcav = back-cavity length, m
P = total pressure, Pa
p = pressure, Pa
Rexp ∕num = reflection coefficient
So∕bc = orifice/back-cavity cross-sectional area, m2

Sh = Shear number

u 0 = fluctuating velocity in duct, m∕s
u 0
o = fluctuating velocity in orifice, m∕s

Z = acoustic impedance, �Pa ⋅ s�∕m
z = normalized acoustic impedance
Δp = pressure loss, Pa
λa = acoustic wavelength, m
ρ = density, kg∕m3

σ = open area ratio
ϕ = acoustic velocity potential, m2∕s
Ω = vorticity, m−1

Superscripts

•̂ = Fourier transformed variable
•
0 = time fluctuating quantity

I. Introduction

ACOUSTIC damping systems, such as Helmholtz resonators,
perforated liners, andquarter-wavelength cavities, are commonly

used in multiple industrial applications to reduce sound transmission
and to control acoustic feedback that can lead to instabilities, for
instance, in combustion systems like aeroengines or gas turbines.
When designed properly, such devices dissipate the acoustic energy at
a specific bandwidth. The behavior of such an acoustic damper is often
characterized by its acoustic impedance, which is defined in the
frequency domain as the ratio of the pressure to the normal acoustic
velocity. The acoustic dissipation mechanisms, and therefore the
impedance values, differ significantly depending on the amplitude of
the acoustic excitation. For low excitation amplitudes, the viscous
dissipation dominates. In this case, the impedance is independent of the
sound amplitude, and the resonator or orifice behaves like a linear
system. Numerical methods based on linearized equations, like the
linearized Navier–Stokes equations, allow for an efficient treatment of
this linear regime with limited computational costs [1]. By increasing
the excitation amplitudes, nonlinear effects appear and become
progressively dominant. Such nonlinear effects originate from flow
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separation at the neck of the resonator, which transfers acoustic energy
to the hydrodynamic field. The creation of vortices at the orifice neck
increases considerably the dissipation of the acoustic energy. This
feature is of importance for the design of acoustic dampers, as it
impacts substantially the sound wave attenuation. The nonlinear
regime is, however, more complex to predict accurately due to the
intricate nature of the physical phenomena taking place. Linear
numerical methods are therefore not suitable at medium and high
excitation amplitudes, and nonlinear time domain solvers are needed.
The present work investigates the capability of an incompressible

unsteady computational fluid dynamic approach to study numeri-
cally the aeroacoustic response of a Helmholtz resonator to an
external acoustic excitation. Different sound pressure levels (SPLs)
are included in this study to cover the different regimes of an
investigatedHelmholtz resonator. Incompressible flow computations
have already successfully been used in the past to characterize the
acoustic behavior of confined flow systems. In thework ofMartínez-
Lera et al. [2], an approach combining incompressible computational
fluid dynamics (CFD) and vortex sound theory [3] was applied
successfully to a two-dimensional laminar flow through a T joint.
This methodology was further improved and applied to corrugated
pipes by Nakiboğlu [4] and to a large orifice configuration with
through flow by Lacombe et al. [5] for whistling prediction. In
contrast to those previous works, the present study focuses on both
linear and nonlinear regimes of Helmholtz resonators in the absence
of mean flow. The extension to the case with flow can be done easily
due to the present general formulation and arguments presented by
Nakiboğlu [4] and Golliard et al. [6].
Section II explains in detail the methodology applied here for the

numerical acoustic characterization of a Helmholtz resonator. The
numerical setup and the postprocessing steps used to determine the
surface impedance of the resonator are described. In Secs. III and IV,
the results for the impedance describing functions estimated by the
proposed approach are shown for the linear and nonlinear regimes,
respectively. In both cases, the results are compared to impedance
values obtained using compressible flow computation of the
complete resonator and validated against measurements data.
Section V concludes this paper with an overview of the main
observations of this study.

II. Description of Methodology and Case Study

A. Decomposed Helmholtz Resonator

The basic idea of using an incompressible solver to study the
acoustic behavior of a Helmholtz resonator, placed at the termination
of a duct as depicted in Fig. 1a, appears as a contradiction at first
thought. The incompressible nature of the fluid violates indeed the
principle of mass conservation if a nonzero inlet velocity is
prescribed at the open side of the duct closed by the resonator, which
makes impossible the direct study of this configuration by
incompressible CFD simulation. The methodology proposed here to
face this issue is to decompose the completeHelmholtz resonator into
its twomain components: the orifice neck and the backing cavity (see
Fig. 1b). Such a decomposition has already been proposed by Ingard
and Ising [7]. Formost of the configurations of interest, the orifice can

be considered acoustically compact; i.e., the Helmholtz number He,
which describes the ratio of the neck length or diameter to the

acoustic wavelength λa, is small (He ≪ 1). Thus, the flow through
the orifice can be treated as incompressible. The compressible effects
occur solely in the backing volume. The orifice transfer impedance
Zo is often used to quantify the acoustic behavior of an orifice. It is
defined as the ratio of the Fourier component (superscript ·̂) of the

fluctuating pressure dropΔp̂ 0 � p̂ 0
1 − p̂ 0

2 and velocity normal to the
reference surface in the duct front of the resonator u 0, i.e.,

Zo � Δp̂ 0

û 0 (1)

Note that in the previous definition the velocity û 0 is the cross-

sectional surface averaged velocity in the resonance tube. There are
other authors using the cross-sectional surface averaged velocity in
the orificeu 0

o instead. These two velocities are related via the porosity
of the resonator plate σ, such that u 0 � σu 0

o. The porosity is defined
as σ � So∕Sbc, with So and Sbc denoting the cross-sectional areas of
the orifice and backing cavity, respectively.
The contribution of the backing volume can be described in terms

of a surface impedance, Zbc � p̂ 0
2∕û 0

2, which is done here
analytically, as described in Sec. II.A.2. The orifice transfer
impedance can therefore be expressed as

Zo � p̂ 0
1 − Zbcû

0
2

û 0
1

(2)

Because of the acoustically compact neck and the same areas on

both sides of the orifice, it is reasonable to assume û 0
1 � û 0

2. Thus,
the surface impedance of the resonator Zr is given in this lumped
model as (cf. Ingard and Ising [7])

Zr � Zo � Zbc (3)

The present study builds on this Helmholtz resonator
decomposition and aims to investigate the validity of this
decomposition at different levels of sound excitation. In doing so,

the advantages of an incompressible solver are exploited for the
simulation of the flow through the orifice, including the vortex
generation responsible for the nonlinear acoustic losses. Details on
the estimation of the orifice transfer impedance and backing volume
surface impedance are given in the following sections.

1. Orifice Impedance Zo

The methodology to get the orifice transfer impedance from the

incompressible simulations is explained in this section. In the plane
wave regime, a one-dimensional approximation along the duct is
possible, and the area-averaged absolute pressure at several sections
of the duct is stored at each time step of the flow simulation. This
allows computing the pressure differences between two arbitrarily

chosen sections separated by the orifice: ΔpAB � pA − pB is the
pressure jump (or loss) between the sections A on the inlet side andB
on the outlet side (see Fig. 2).

a) Complete helmholtz resonator b) Decomposition into orifice and
backing volume

Fig. 1 Sketch of the considered geometry and reference cut planes 1 and 2 for the decomposed resonator model.
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In a general manner, for an incompressible fluid, the momentum

equation yields

∇P � −ρ
∂u
∂t

− ρ�Ω × u� � ρν∇2u (4)

where P is the total pressure P � p� ρkuk2∕2, where u stands for
the velocity, Ω � ∇ × u denotes the vorticity, and ρ and ν are the

medium density and kinematic viscosity, respectively. The second
term on the right-hand side of Eq. (4) is related to the acoustic power
in an inviscid and homentropic flow according to Howe’s energy

corollary [3]. The third term describes the viscous dissipation
effects. The total pressure difference ΔP between two sections
can be expressed as the sum of two distinct contributions:

ΔP � ΔPpot � ΔPs. The pressure difference ΔPpot is related to a
potential flow solution [first term on the right-hand side of Eq. (4)],

which would be the solution in the absence of vorticity and viscous
effects, whereasΔPs is linked to sink/source terms for the soundwith
both vorticity and viscous effects taken into account [last two terms

on the right-hand side of Eq. (4)]. In the numerical models, the
viscous dissipation at the walls of the main duct is neglected, and slip
boundary conditions are applied. As a consequence, the vorticity and

viscous effects can be neglected for thewave propagation in the ducts
so thatΔPduct;s � 0 inside the duct segments. In the one-dimensional

approximation, ΔPpot can be expressed as

ΔPpot � −ρ
Z
L

∂ux
∂t

dx (5)

with L the total length between the two sections, x the coordinate
along the duct axis, andux the axial component of the velocity at the x
location (see Fig. 2). Inside the duct segments, ΔPduct;pot can be
interpreted as a result of the propagation along the duct of the

fluctuation invelocity ux. The pressure losses can be divided spatially
between ducts and orifice parts, leading to

(6)

with ΔPAB the total pressure losses between the measurement

sections A and B and ΔPduct the total pressure losses in the two duct
segments. From this, the expression to compute the orifice pressure
drop ΔPo is

ΔPo � ΔPAB − ΔPduct;pot (7)

There are two different ways to determine the orifice transfer
impedance values from themeasured pressure time series, depending
on whether the potential flow pressure loss correction inside the duct

is done directly on the pressure time data, or in the frequency domain

on the impedance itself. Those two approaches to estimate the orifice

impedance from the pressure and velocity time series are schematized

in Fig. 3.
In approach 1, the impedance due to the duct potential pressure loss

Zduct;pot is subtracted from the total measured impedance Ztot to

estimate the transfer impedance from the orifice Zo as

Zo � Ztot − Zduct;pot (8)

For an orifice of thickness lo placed between the measurement

sections A and B, as illustrated in Fig. 2, Zduct;pot is computed as

Zduct;pot � jρω�LAB − lo�u 0 (9)

where LAB is the distance between the measurement sections A and

B,u 0 is the velocity perturbation inside the duct parts,ω is the angular

frequency, and j is the imaginary number
������
−1

p
.

In approach 2, the duct pressure loss is directly subtracted from the

time pressure data. Asu 0 does not depend on the position x in the duct
segments, one gets

ΔPduct � ρ�LAB − lo�
∂u 0

∂t
(10)

where ∂u 0∕∂t can be computed analytically for harmonic excitation

inlet velocity or has to be computed numerically from the velocity

time series in case of broadband excitation.

2. Backing Volume Impedance Zbc

The contribution of the backing volume can also be described in

terms of a surface impedanceZbc � p̂ 0
1∕û 0

2, which can be determined

through an analytical model. Two analytical expressions for the

backing volume are shown here. Using the one-dimensional acoustic

equations, the impedance is given as

Zbc � −j cot�klcav�ρc (11)

where k denotes thewave number k � ω∕c, c is the speed of sound in
the medium, and lcav is the length of the backing cavity. When the

whole volume is compressed and expanded simultaneously, the

following expression for the impedance can be derived using the

isentropic compressibility β ≡ 1∕�ρc2�:

Zbc � −j
ρc2Sbc
Vω

(12)

This is the same formulation as in, e.g., Keller and Zauner [8]. Both

Eqs. (11) and (12) describe the same behavior for lcav ≪ λa. This can
be observed by means of the Laurent series of Eq. (11):

Zbc∕�ρc� � −i�1∕�klcav� − klcav∕3 − k3l3cav∕45�O�k5l5cav��. The

first term of the expansion is identical to the expression in Eq. (12).
Note that both expressions deliver a purely reactive contribution from

the backing cavity. Equation (12) is used in the present study.

B. Case Configuration and Numerical Setup

The geometric configuration for the incompressible simulations as

well as the definition of the boundary conditions for the unsteady CFD

are illustrated in Fig. 2. The numerical domain consists of an orifice of

u'

p'
f

g

x

(0,0)

A B

r

r

Fig. 2 Geometrical configuration for the Helmholtz resonator study
and boundary conditions: ( ) slip wall, ( ) no-slip wall, ( )
prescribed fluctuating velocity, and ( ) fixed pressure boundary
conditions.

Fig. 3 Diagram of the two approaches to get the transfer impedance of
the orifice from Δp 0: approach 1 (top) and approach 2 (bottom).
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diameter do � 4.2 mm and thickness lo � 4.0 mm, placed in a duct
of diameter dcav � 50 mm. This gives a porosity σ of the resonator
front plate of 0.71%. Those dimensions have been chosen according to
the Ref. [9], corresponding to the case with sharp edges, used for
comparison (see Sec. II.C). The original resonator design has a cavity
length of lsim∕dcav � 0.4. The extension of the computational domain
in the axial direction lsim should be long enough to allowmeasurement
sections to be put out of the area that is influenced by hydrodynamic
fluctuations. For the investigated case described through this work,
lsim∕dcav equals 10 and has been taken long to allow different
measurement sections at x∕dcav � ��8; � 6; � 4; � 2� along the
duct for assessment of the methodology. Numerically determined
impedance results have been shown independent of the location of the
chosen measurement sections after post-processing. This ensures that
the impedance results are not polluted due to vortices crossing the
measurement sections. The length lsim∕dcav � 2 has been found to be
sufficient for the investigated geometry at the investigated SPLs, and it
reduces considerably the computational cost and time.
Figure 2 presents also the boundary conditions used for the

unsteady incompressible CFD computations. The wall of the duct is
defined as the slip-wall boundary condition. This assumption implies
that no boundary layer develops along the duct and that the velocity
profile is constant through the section. Such a hypothesis is fair, as it
has been observed in various compressible studies, e.g., the large-
Eddy simulation (LES) computations performed by Alenius [10],
that changing this boundary condition does not affect the local orifice
behavior. This assumption is of importance for the present study, as it
allows one to easily discard pressure losses occurring in the duct
upstream and downstream of the orifice. The wall of the orifice plate
is, however, prescribed as no-slip boundary condition as the
resolution of the boundary layers in the vicinity of the orifice is of
major importance for a correct orifice impedance estimation. The
velocity is prescribed at the duct inlet boundary as a time-dependent
harmonic fluctuation with zero mean. Finally, a fixed pressure
boundary condition is applied to the outlet side of the duct to close the
problem definition.
The present approach is limited to cases inwhich the hydrodynamic

vortex structures are contained inside the numerical domain. As the
boundary conditions for the incompressible simulations are defined
through prescribed velocity and pressure values, vortices crossing the
domain limits are not accounted for by boundary treatment. Violation
of this rule has shown to deliver inaccurate results as the numerical
problem formulation is inconsistent in that case. If vortices approach
the in-/outflow boundaries, the computational domain has to be
extended. This can be required for configurationswith orifices of small
diameter at high excitation amplitudes, as for those cases the vortices
can travel far away from the production zone.
In this work, the incompressible finite-volume solver of a

commercial code (ANSYSFluent v14∕v15) is used to characterize the
flow. The chosen solver is pressure based, time-dependent, implicit,
and second order in time and space. The pressure correction scheme
applied is Semi-Implicit Method for Pressure-Linked Equations. No
turbulence modeling is applied for the presented simulation results as
the Reynolds number based on the orifice size and velocity fluctuation
amplitude at the orifice is rather low (maximum Re ≈ 3000 at high
excitation levels). Turbulencemodeling has shownvery limited impact
on the estimated orifice transfer impedance under the present operating
conditions. Comprehensive parameter studies regarding grid, time
step, and solver parameters have been performed to ensure that the
presented results are independent of those numerical settings. Standard
parameters for the results presented here are the minimal size of mesh
cell hmin� 10−5 m, time step dt� 10−6 s, number of iterations per
time step Niter � 20. Both two-dimensional axisymmetric and three-
dimensional simulations have been carried out in this work to
investigate three-dimensional effects.

C. References for Validation of Method

As mentioned in Sec. I, the results computed from incompressible
unsteady CFD simulations are compared to two different data sets:
compressible CFD results and experimental data performed on a

particular Helmholtz resonator geometry. This paragraph describes
briefly those references and the geometric definition of this particular
case. More detailed on the reference works can be found in the
papers [9,11].

1. Numerical Compressible Computational Fluid Dynamics Refer-

ence Data

Compressible simulations of the Navier–Stokes equations with
both laminar and turbulent models (LES with the k-equation eddy-
viscosity model) performed with the Pimple algorithm of
OpenFOAM [12] are used for comparison [9,11]. To distinguish,
for the estimated resonator acoustic impedance, between the possible
differences originating from the numerical solvers and from the
modeling part, both open-end tube (without accounting for the cavity
backing wall) and closed-end tube (Helmholtz resonator)
configurations are simulated with the compressible solver. It was
also verified that the turbulence modeling leads only to very minor
differences. With the turbulence model activated, the acoustic
resistance increased slightly. This shows that turbulent structures as
represented by the subgrid scale model do not have a significant
impact on the separation mechanism itself in the chosen SPL range.
In the compressible flow simulations, the computational domain is

excited from the boundary opposite to the resonator at a distance
lsim∕dcav � 2 by imposing a propagating characteristic wave Fr of
amplitude Af. For this purpose, the Navier–Stokes characteristics
boundary condition, cf. Poinsot and Lele [13], is applied. Particular
care has been taken to match Af with the value of the amplitude Au in
the incompressible flow simulations to ensure the same excitation state
of the orifice in both closed and open tubes. The method to define
correctly the excitation amplitude is discussed in detail in Sec. II.D.
TheFr wave can be imagined as a wave traveling in the right direction
toward the orifice location, whereas Gr is the reflected one traveling
back to the inlet. Shortly after the inlet, area-averaged pressure and
velocity fluctuations were evaluated across a reference plane to
determined Fr andGr time series to evaluate the reflection coefficient
Rnum. For those harmonically excited simulations, the reflection
coefficient is determined through Rnum�ω� � ĝr�ω�∕f̂r�ω�, with
angular frequency ω. The reflection coefficient is transformed to
the resonator normalized surface impedance zr, using the relation
zr � �1� Rnum∕ exp�∕�1 − Rnum∕ exp�.

2. Experimental Reference Data

In addition to the numerical results, a measurement campaign has
been performed by Förner et al. [9] at the Eindhoven University of
Technology on a Helmholtz resonator configuration. The experi-
ments were carried out with an impedance tube in a semi-anechoic
chamber. The resonator sample was placed at one extremity of the
impedance tube. The measurement data give the surface impedance
of the complete Helmholtz resonator. The tube has six BSWA
MPA416microphones with the average sensitivity of 50.45 mV∕Pa,
equally distributed along the 1-m-long tube. The microphones have
been calibrated to measure the reflection coefficient Rexp in the
frequency range [100–700 Hz]. The numerical work will limit itself
to this frequency range. The reflection behavior of the test object has
been studied for various SPLs. Data for the cases 89.3 and 119.7 dB
are presented here for assessment of the investigated methodology.
Those SPL values are controlled over the entire frequency range at a
reference position, here the closest microphone from the resonator
front plate placed 49.7 mm away. The 89.3 dB case is in the linear
regime, while in the 119.7 dB case, nonlinearities are present.

D. Setting Excitation Amplitudes

For the purpose of comparing results of the incompressible
simulations with existing experimental data, it is necessary to
ensure that the velocities in the orifice agree with each other for the
different setups. This fact is also relevant for comparison with the
compressible solver, as the definition of the excitation between
compressible and incompressible solvers is fundamentally different.
The excitation is given by a time-varying axial velocity fluctuation at
the inlet boundary for the incompressible simulations, whereas it is

4 TOURNADRE ETAL.



Preprint

defined through injection of an Fr wave for the compressible ones.
The reflection coefficient is therefore a key parameter tomatch results
in the nonlinear regime. This has been found to be a challenge from a
practical point of view. Drawing impedance curves from a particular
resonator at a certain SPL given at a reference position can also be
achieved by the present incompressible approach without any
knowledge of intermediate variables such as the reflection
coefficient. This requires, nevertheless, in general, several simulation
trials for one case, in which the input velocity is progressively
modified until the SPL matches the target one.
To compare the results from the investigated methodology to

existing data sets, the following procedure has been applied, based
on the relations between propagating waves Fr and Gr and
primitive variables p 0 and u 0. Below the cut-off frequency of the
duct, and in the case of no mean flow, the acoustics can be
described as the superposition of the Riemann invariants defined
by Fr � 1∕2�p 0∕�ρc� � u 0� and Gr � 1∕2�p 0∕�ρc� − u 0�. In the
resonance tube, a standing wave is developed with a fluctuating
pressure at the position x,

p 0�x� � ρc�Fr�x� �Gr�x�� (13)

In the experimental setup, the reference microphone was
mounted at a distance of lref � 0.0497 m away from the resonator
front face. This is selected as the reference position xref for the SPL.
Moreover, the reflection coefficient R � Gr∕Fr depends on both
frequency and amplitude. The reflected wave at the reference
position is thus Gr�xref� � R�ω; SPL� exp�−jω2lref∕c�Fr�xref�.
Accordingly, the fluctuating pressure at position xref is given as
p 0∕�ρc� � �1� R�ω; SPL� exp�−jω2lref∕c��Fr�xref�. Considering
the ratio of rms values to harmonic amplitude being 1∕

���
2

p
, the

amplitude Af of the incoming wave Fr � Af exp�jωt� is given as

Af� 10SPL∕20
���
2

p
pa

j1� R�ω; SPL� exp�−jω2lref∕c�jρc
(14)

wherepa � 20 μPa is the commonly used reference sound pressure
in air.
The fluctuating velocity u 0 is given as the difference of the

Riemann invariants, i.e., u 0 � Fr −Gr. Thus, the amplitude of the
velocity Au at the resonator mouth position (at xo � −lo∕2 in this
work) can be calculated as

Au�xo��ω; SPL� � Af�ω; SPL�j1 − R�ω; SPL�j (15)

For the incompressible simulations, the inlet amplitude prescribed
at the inlet boundary is directly given by Eq. (15). For the
compressible simulations, in the case of the full resonator
configuration, the inlet boundary condition is Af given by Eq. (14).
Finally, exchanging the backing cavity with a nonreflecting outlet
(Z � ρc), the amplitude of the Fr wave has to be corrected. The
reflection coefficient of the corresponding orificeRo (i.e., open tube)
can be estimated as

Ro � zr − zbc
zr − zbc � 2

(16)

Thus, the amplitude of the i wave in the open-end tube
configuration Af;o should be set as

Af;o � Af

j1 − Rj
j1 − Roj

(17)

Table 1 lists the values of the different excitation amplitudes
needed to ensure the same state at the orifice neck for five frequencies
close to the resonator eigenfrequency and for the two investigated
SPLs. As the primitive variables and Riemann variables are linked
through the reflection coefficient, values of velocity at the orifice
coming from the compressible simulations are still slightly different,
but these deviations have been judged to have only a small impact on

the estimated impedancevalues.Note that in the linear regime (here at
89.3 dB), even if specific values are given in Table 1, computations
give the same impedance values taking different inlet velocity
amplitudes, as long as these prescribed excitation amplitudes are
small enough to remain in the linear regime of the resonator.

III. Results Obtained for Small Excitation Amplitudes:
Linear Regime

For harmonic pulsating flows at the orifice, the impedance value
for each excitation frequency is computed by dividing the Fourier
coefficients of the fluctuating pressure loss through the orifice Δp̂ 0
with the velocity perturbation û 0. Each frequency requires therefore
one CFD simulation. The harmonic fluctuating inlet velocity is given
for a given angular frequency ω by

u 0�t� � Au sin�ωt� (18)

where the amplitude of inlet velocity Au is defined as described in
Sec. II.D.

A. Resonator Impedance in Linear Regime

Figure 4 shows the obtained normalized surface impedance curves
for the case SPL � 89.3 dB over the frequency range [100–700 Hz]
compared to the experimental data and the values obtained from the
system identification of the complete three-dimensional resonator
model with the compressible solver. Impedance values are
normalized by the characteristic isentropic impedance Z0 � ρc.
For each simulation set, it is verified that the impedance values are
independent of the measurement sections selected for determining
the pressure loss.
All results show a fair agreement around the Helmholtz resonance

frequency fH;lin � 372 Hz in the linear regime. The reactance
Im�zr� matches well with the experimental data over the entire
frequency range. However, one can see that the discrepancies
increase slightly with increasing frequency. The incompressible
harmonic results lead to a better reactance prediction than the
compressible solver far from the resonator eigenfrequency. The same
observation can be made on the resistance Re�zr�. Notice also that
both experimental and compressible values present a large error far
from the resonance frequency as the impedance values are obtained
using the reflection coefficientRexp orRnum, so that even a small error
on the reflection coefficient gives a larger uncertainty on the
impedance in such a condition. This comes from the fact that the
transformation from Rexp ∕num to Re�zr� is ill conditioned away from
the eigenfrequency in the case of the complete Helmholtz resonator,
as the magnitude of the reflection coefficient is close to unity at these
frequencies. The resistance obtained by incompressible simulations
seems a bit lower than experimental data, but the trend in frequency
(given by the slope) is well predicted.

B. Comparison of Two Approaches in Harmonic Case

The two approaches to extract Zo from the incompressible results,
as discussed in Sec. II.A, are investigated here in the case of the linear
regime with harmonically excited resonator. The difference in
concept between those approaches lies in the correction of the

Table 1 Example of inlet excitation amplitudes for Fr and u 0 at two
different SPLs

Frequency, Hz 340 360 380 400 420

SPL � 89.3 dB
Af , m∕s 0.0020 0.0033 0.0019 0.0013 0.0011
Au, m∕s 0.0021 0.0043 0.0024 0.0014 0.0009
Af;o, m∕s 0.0076 0.0165 0.0097 0.0057 0.0041

SPL � 119.7 dB
Af , m∕s 0.0552 0.0601 0.0574 0.0490 0.0401
Au, m∕s 0.0411 0.0474 0.0471 0.0407 0.0295
Af;o, m∕s 0.1500 0.1823 0.1891 0.1693 0.130
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pressure losses in the duct segments: in the frequency domain
(approach 1) or in the time domain (approach 2). Figure 5 shows that
there is a good agreement between impedance values resulting from
both approaches. The reactance values in particular are very similar.
More discrepancies can be noticed on the resistive part of the
impedance with the difference between the approaches growing
when the frequency is increasing. It was observed that approach 2 is
more sensitive to the simulation parameters (time step, mesh
refinement, and dependency of the measurement section) than
approach 1, but both approaches converge to the same impedance
values. Approach 1 can therefore be favored for its robustness. Those
conclusions drawn for the linear regime with harmonic signal
excitation have been verified to be valid for the nonlinear regime and
for the linear regime with broadband excitation as well.

IV. Results Obtained for Higher Excitation Amplitudes

This section presents the results obtained for higher excitation
amplitudes, where flow separates at the edges of the orifice, i.e., in the
nonlinear resonator regime.

A. Resonator Impedance in Nonlinear Regime

Figure 6 presents the normalized impedance obtained at a SPL of
119.7 dB from the different numerical methods performed on the
investigated resonator geometry compared to the experimental data.
Three-dimensional simulations have been performed with a much

shorter computational domain with lsim∕dcav � 2. The three-

dimensional mesh consists of nearly 1.5 million cells. Impedance

results from different measurement sections have been shown to be

identical.
The main conclusion from this work is that the tested numerical

models, in spite of their differences in terms of physics and

methodology, are in very good agreement. Nevertheless, a systematic

overprediction of the resistance compared to experimental results can

been seen. The discrepancy is expected to be of physical nature, as

mesh/time-step influences have been discarded. The reason for this

discrepancy is still under investigation. The comparison of the results
for the whole resonator and the results obtained by simulating

separately the orifice and the back cavity shows overall that the

combined model gives very satisfying results and that this model is

still valid for this range of moderately high sound amplitudes. Some

small differences between the two- and three-dimensional models
can be observed, but the overall impact of three-dimensional effects is

rather small, although it clearly increases with increasing velocity at

the orifice. The flow visualization (not shown here) suggests that the

eddies dissipate in an asymmetrical manner but that this asymmetry

does not influence the separation process itself. Thus, the three-
dimensional effects are not important from an acoustical point of

view for the considered SPLs. For the reactance, numerical and

experimental data are very similar, with a very good match of all

numerical results. In detail, it seems, however, that the numerical

approaches underpredict to some very small extent the reactance,

Fig. 4 Normalized resistance Re�zr� (left) and reactance Im�zr� (right) of the Helmholtz resonator, obtained with the methodology based on
incompressible simulations, compared to experimental data and broadband compressible numerical results (case SPL � 89.7 dB): ( ) two-dimensional
incompressible, ( ) three-dimensional compressible with broadband excitation, and (-×-) experimental data.

Fig. 5 Normalized resistanceRe�zr� (left) and reactance Im�zr� (right) of the Helmholtz resonator evaluated from incompressible simulations with the
approaches 1 and 2: ( ) approach 1, ( ) approach 2, and (-×-) experimental results.
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giving a slightly higher resonance frequency. When compared to the

previous linear regime case, one can note that the reactance is only in

a minor way affected by variation of the excitation amplitude.

Complementary computations have been run for a different

Helmholtz resonator geometry, based on the case studied by Hersh

et al. [14] (see Fig. 12a in the referredwork), to see if the overprediction

in resistance is also present. For this second resonator geometry,

the dimensions of the acoustic resonator are lo � 1.59 mm,

do � 6.35 mm, lcav � 25.4 mm, and dcav � 50.8 mm. Figure 7

shows the comparison of the numerical results from both

incompressible and compressible numerical approaches to the

experimental data of the literature. The general trends for both resistive

and reactive parts with respect to increasing excitation amplitudes are

correctly captured by the numerical methods. A good quantitative

agreement is also obtained. A shift in the resonance frequency can be

clearly observed in Fig. 7, with a growing deviation from its value in

the linear regime fH;lin toward higher frequencies for increasing SPLs.
This shift occurs due to a decrease of the reactance for increasing

excitation amplitudes, which is related to a reduction of the effective

length by vortex shedding [15]. Since the neck geometric length is

smaller in this case than for the first resonator configuration

investigated, this effect is much more visible here. The present cases

correspond to high Strouhal numbers Sh ≫ 1, with Sh ∈ �25–60�,
where Sh � do

������������������
ωρ∕�4μ�p

is the ratio of the Stokes layer thickness to

the orifice diameter. The physical interpretation of the nonlinear

impedance at such high Shear number values was shown [15] to be

more complicated than at smaller Sh, due to complex vortex shedding
effects, and requires further investigation. The resistance over-
prediction from the numerical methods seems to be still present in this
case, even if significantly less pronounced.

B. Effects of Rounded Edges

One possible reason for the systematic difference between
experimental and numerical impedance results has been thought to
originate from the existence of some rounding of the edges for the
experimental Helmholtz resonator test sample. It was already shown
in previous works [9,16] that the presence of chamfers strongly
changes the structures of the produced vortices and the resistance at
moderate and high excitation amplitudes. In the present study, the
size of the considered chamfers is much smaller so that one can speak
about microchamfers or microrounded edges. These microrounded
edges are investigated as representing more realistic edges, similarly
to the ones expected from manufacturing processes.
Figure 8 shows the impact of microrounded edges on the

impedance for both linear and nonlinear regimes. In the linear regime,
the microrounded edges affect neither the determined resistance nor
reactance. This is expected as the volume of the orifice is not
considerably modified by the microchamfering and therefore the
reactance, related to the inertial effects, is not altered. The
geometrical modification at the orifice edges does not influence the
flowpath, producing no change for the pressure drop and therefore no
change in the resistance, either. In the nonlinear regime, one can

Fig. 6 Comparison of numerical results from the different solvers with experimental data for the case at 119.7 dB: (-×-) experimental results [9], ( ) two-

dimensional incompressible decomposed model, ( ) two-dimensional compressible decomposed model, ( ) two-dimensional full resonator, ( ) three-
dimensional incompressible decomposed model, ( ) three-dimensional compressible decomposed model, and ( ) three-dimensional full resonator.

Fig. 7 Normalized resistanceRe�zr� (left) and reactance Im�zr� (right) for theHershHelmholtz resonator configuration at three SPLs ( ) 120 dB, ( )
130 dB, and ( ) 140 dB, obtained from the ( ) incompressible method, ( ) compressible method, and ( ) experimental data from Hersh [14].
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Preprintobserve from Fig. 8 that even small microrounded edges can affect
significantly the predicted resistance values. Results for two different
rounded edge radii are shown, Rf � 40 μm and Rf � 80 μm,
respectively. These radii represent 1 and 2% of the orifice thickness.
From those observations, accounting for rounded edges tends to
decrease the resistance, delivering a better agreement with the
experimental results. After consideration of the rounded edge radius
for the actual test sample, which is found to be close to 80 μm, the
extent of this change for the present case seems, however, to not fully
explain the observed discrepancies in resistance between the
numerical and experimental approaches. A rounded edge radius lager
than 120 μmwould indeed be required in the simulations to equal the
experimental resonance peak in resistance. No impact on the
reactance can be noticed. Additional flow computations have shown
that the impact of rounded edges on the impedance is captured in a
similar manner for both compressible and incompressible cases, for
both rounded edges and straight chamfer situations. The actual
microscale geometry does not change the results significantly.

V. Conclusions

Amethod to numerically characterize the aeroacoustic behavior of
Helmholtz resonators without mean flow has been investigated. Both
linear and nonlinear regimes have been studied.Aprocedure to assess
the present methodology, by ensuring the same velocities in the
orifice as in compressible flow simulations and experiments, is
described in this paper. The impedance values obtained with the
incompressible computational fluid dynamics (CFD) simulation of
the orifice combined with an analytical backing volume model are in
good agreement with results from a compressible simulation of a
complete resonator. The numerical results for the resistance in the
nonlinear regime show a systematic overprediction with respect to
experimental data. The impact of microrounded edges on the
estimated impedance has been investigated. Even if the presence of
microrounded edges was deemed insufficient to explain alone the

discrepancies, such geometrical details were found to affect
significantly the computed resonator resistance and should therefore
be included for accurate predictions of the acoustic behavior of
Helmholtz resonators in their nonlinear regime.
The presented approach has shown, nevertheless, to give satisfying

results for the acoustic impedance of Helmholtz resonators. It is an
alternative for the study of the nonlinear regime of such acoustic
damping systems. The proposed methodology can be applied for the
study of both linear and nonlinear regimes of theHelmholtz resonator
with commercial CFD software with moderate computational costs.
One of the most significant advantages of this methodology is that it
does not rely on the reflection coefficient to estimate the impedance
(as in experiments or compressible simulations) and instead the
impedance is directly computed from the pressure and velocity.
Impedance curves are therefore valid on a broader frequency range
than just around the resonator resonance frequency. This approach
can be extended to the study of an orificewith bias or grazing flow in a
straightforward manner following previous works [2,4,6]. In the
no-mean-flow case, two possible approaches in the postprocessing of
the orifice transfer impedance have been studied. The difference in
concept between those approaches lies in the correction of the
pressure losses in the duct segments: in the frequency domain
(approach 1) or in the time domain (approach 2). A general
conclusion is that both approaches investigated in this work lead to
similar impedance prediction, but approach 1 has been shown to be
more robust. Finally, the possible impact of three-dimensional effects
on the impedance results presented in this work has been investigated
and judged minor for the applied conditions.
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