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Abstract
Thermoacoustic instabilities, caused by the feedback between unsteady heat release and pressure perturbations, are
characterised by large amplitude pressure oscillations. These oscillations, if unchecked and uncontrolled, pose a great
threat to combustion systems. One strategy to mitigate them is by the use of cavity backed acoustic liners (perforated
plates). In this study, we consider a generic combustor configuration: a quarter-wave resonator (1-D, one end open
and the other end closed) containing a compact heat source and heat exchanger tube row. The aim is to use the heat
exchanger tube row as the acoustic damper. The heat exchanger tubes are simulated using an array of thin rods with
rectangular cross-section and having a bias flow through the gaps between the rods. When placed near the closed end
of the resonator, these rods behave like a cavity-backed slit-plate/an acoustic liner. We derive the characteristic equation
for the complex eigenfrequencies of this set-up. From the growth rates (imaginary parts of the eigenfrequencies), we
construct stability maps for various system parameter combinations. Preliminary results show that increasing the bias
flow through the slits tends to stabilise the system.

Keywords
Thermoacoustic instabilities, Control of Instability, Stability analysis, Heat exchangers

Introduction

Thermoacoustic instabilities, if unchecked and uncontrolled
in combustors, can cause catastrophic damage to the
hardware. These instabilities arise due to the existence of
a positive feedback between the unsteady heat release and
the acoustic pressure oscillations. It is important to develop
mitigation strategies to predict and prevent these instabilities.
One such strategy that gained popularity in recent years is the
use of cavity backed acoustic liners in combustors.

Researchers have proved both theoretically and experi-
mentally, that acoustic liners when backed by a cavity could
effectively damp acoustic waves. These liners are usually
plates with sharp edged circular/ elliptical perforations. The
presence of a bias flow in these perforations induce vortex
shedding from the sharp edges, causing the vortices to act
as acoustic sinks. Bechert (1980) quantitatively measured
this mechanism of sound absorption in a jet flow. Howe
(1979) derived expressions for the absorptive properties of
perforated plates in unsteady high Reynolds number flows,
and Hughes and Dowling (1990) evaluated the absorption
properties of cavity backed perforated plates, with bias flow.
Tran et al. (2009) experimentally verified the applicability
of this absorption mechanism to stabilise their combustor.
Theoretical analysis and stability predictions of Tran’s com-
bustor were carried out by Heckl and Kosztin (2013).

In the present study, we aim to stabilise an existing
unstable mode of a generic combustion system with non-
uniform temperature, using a heat exchanger. The heat
exchanger consists of an array of tubes and these tubes are
simulated as thin sharp edged rods with rectangular cross-
section, enabling us to use the approximation of a slit-
plate. The combustor is treated as a quarter-wave resonator

with a heat source, open at one end and closed at the
other, and when the heat exchanger tubes are placed close
to the closed end, they behave like a cavity-backed slit-
plate or an acoustic liner. Dowling and Hughes (1992) have
shown, both numerically and experimentally, that the sound
waves incident on a slit-plate backed by cavity will be
completely absorbed, provided the cavity length and bias
flow velocity are chosen appropriately. Surendran and Heckl
(2015) developed a theoretical model for this absorption
method and demonstrated that it can stabilise an unstable
mode in a combustor with uniform temperature distribution
and a compact heat source. This study aims to extend the
latter work to account for a non-uniform temperature regime
and a more general heat release law.

Description of model
The combustion system studied is as shown in Fig. 1. It
consists of a quarter-wave resonator, open at the upstream
end (x = 0) and having a reflection coefficient R0 = −1.
The heat source is located at a distance lf from the upstream
end, dividing the resonator into two regions: a cold upstream
region (Region 1) and a hot downstream region (Region 2).
The speeds of sound (c1,2) and mean temperatures (T1,2) are
uniform in both regions. The slit-plate (also referred to as
acoustic liner in the present paper) simulating the heat excha-
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nger is located at the location x = L. The slit-plate has a bias
flow through the gaps, denoted by its Mach number, M . The
downstream end of the combustor is equipped with a rigid
piston, enabling us to vary the distance between the slit-plate
and the piston. This distance is referred to as the cavity length
(lc).
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Figure 1. Schematic of the combustion system

Acoustic Field
The acoustic field within the combustor is modelled as one-
dimensional acoustic waves propagating perpendicular to the
rods (normal incidence), as shown in Fig. 1. For the present
study, we ignore the heat transfer between the rods and the
surrounding fluid, i.e. air. The acoustic pressure and velocity
fields inside the resonator are,

Region 1:

p̂1(x) = Aeik1(x−lf ) +Be−ik1(x−lf ) 0 < x < lf
(1)

û1(x) =
1

ρ1c1

{
Aeik1(x−lf ) −Be−ik1(x−lf )

}
0 < x < lf

(2)
Region 2:

p̂2(x) = Ceik2(x−lf ) +De−ik2(x−lf ) lf < x < L
(3)

û2(x) =
1

ρ2c2

{
Ceik2(x−lf ) −De−ik2(x−lf )

}
lf < x < L,

(4)
where p̂ and û are the acoustic pressure and acoustic velocity
respectively, A, B, C and D are the pressure amplitudes to
be determined and k1,2 = ω/c1,2 is the wave number. The

subscripts 1 and 2 indicate the regions within the resonator.
The factor of e−iωt is omitted throughout the analysis.

Generic Heat Release Law
The heat source is assumed to be compact, planar and
confined to an infinitesimally thin region at x = lf . For
the heat release rate (Q̂), we have adopted the generic
heat release law by Heckl and Kosztin (2013), where
the heat release rate depends on both the instantaneous
velocity fluctuations u(t) as well as the time lagged velocity
fluctuations u(t− τ) at the location lf . It is given by:

Q̂(ω) = α
[
n1û (lf ) eiωτ − n0û (lf )

]
(5)

Q̂(ω) =
α(A−B)

ρ1c1

[
n1e

iωτ − n0

]
(6)

where α is a factor relating the local and global heat release
rates and n1 and n0 are non-dimensional coefficients called
coupling coefficients.

Cavity backed Slit-plate
The heat exchanger is modelled as an array of thin rods,
spaced a distance d apart, having rectangular cross sections
(Fig. 2). Therefore, we can treat this array as a plate with slits
of width 2s. A pressure difference across the slit-plate creates
a bias flow of Mach number M through the slits, causing
vortex shedding. These vortices act as acoustic dampers. In
the model by Dowling and Hughes (1992), the transmission
and reflection coefficients of a slit-plate with bias flow were
derived as,

Tsp = ρωV̇ / (kd) (7)

Rsp = 1− ρωV̇ / (kd) (8)

with

ρωV̇

kd
=

iπν/ (2κsM)

iπν/ (2κsM)− ln(πν) + ln 2/Φ
(9)

and

Φ = 1− 1

κs ln 2

 πI0(κs)eκs + 2i sinh(κs)K0(κs)

πe−κs
[
I1(κs) + I0(κs)

κs ln 2

]
+ 2i sinh(κs)

[
K0(κs)
κs ln 2 −K1(κs)

]
 . (10)

The subscript sp refers to slit-plate and V̇ is the perturbation
volume flux through the slit. ν = 2s/d is the open area
ratio, κs = ωs/U is the Strouhal number, U is the bias flow
velocity, and Im and Km are the modified Bessel functions
of order m. The readers are advised to refer to Dowling and
Hughes (1992) for further details. The rigid wall backing
the plate is at a distance lc from the slit-plate. The effective
reflection coefficient, RL, of the cavity-backed slit-plate is
given by (Surendran and Heckl (2014)),

RL = Rsp +
T 2
spe

2ik2lc

1−Rspe2ik2lc
. (11)
(a)

A C

B D

x = 0 x = lf x = L

lc

Heat Source Plate with slits

M

Tunable cavity

1 2

(b)

2s

d

M

lc

Figure 2. Geometry of the slit plate

In situations where the acoustic liner is non-dissipative,
|Tsp|2 + |Rsp|2 = 1 for slit-plate with bias flow (Howe
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(1998)) and |RL|2 = 1 for a cavity-backed slit-plate. When
the liner is dissipative, these equations do not hold, instead
|Tsp|2 + |Rsp|2 < 1 and |RL|2 < 1. This enables us to
define a quantity known as the absorption coefficient (∆)
of the liner, which is the ratio of the acoustic energy
dissipated/absorbed by the liner to the incident acoustic
energy.

∆sp = 1− |Tsp|2 − |Rsp|2, (12)

∆L = 1− |RL|2. (13)

From Eqs. (7)-(13), we can observe that the absorption
coefficient ∆ is influenced by the bias flow Mach number
(M ), the angular frequency of the incident wave (ω) and
the open area ratio (ν), for both the slit-plate with bias flow
and the cavity-backed slit-plate with bias flow. The cavity-
backed slit-plate has an additional influence from the cavity
length (lc). The influence of these parameters on the |R| and
∆ of the slit-plate and the cavity-backed slit-plate are shown
in Figs. 3 - 6. Figure 3 shows the reflection coefficient and
absorption coefficient for a slit-plate (Figs. 3 (a) and (b)) and
cavity-backed slit-plate (Figs. 3 (c) and (d)), as functions of

Mach number, M , for 3 fixed frequency values: f = 60, 120
and 170Hz. From Fig. 3 (a) and (b), we observe that the |Rsp|
increases with M , whereas the ∆sp increases initially with
M , reaches a maximum of 0.5 and then decreases. Across
frequencies, we observe that |Rsp| and ∆sp are almost
constant values i.e., the slit-plate behaves almost similarly
for the frequencies considered. But, when we have a cavity-
backed slit-plate, the |R| and ∆ have different behavioural
trends with M , when compared to a slit-plate (Figs. 3(c) and
(d)). Figure 3 (c) shows the reflection coefficient |RL| as a
function of M . As M increases, the |RL| decreases, reaches
a minimum and then increases. The absorption coefficient
∆L, on the other hand, exhibits the opposite behaviour.
In addition to this, the cavity-backed slit-plate behaves
differently across frequencies. For a constant M value and
increasing frequency, |RL| decreases, while ∆L increases.
These results can also be deduced from Fig. 4, which
shows |R| and ∆ of a slit-plate (Figs. 4 (a) and (b)) and a
cavity-backed slit-plate (Figs. 4 (c) and (d)) as functions
of frequency for 4 fixedM :M = 0.001, 0.015, 0.05 and 0.1.
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Figure 3. Reflection coefficient and absorption coefficient of slit-plate ((a) and (b)) and cavity-backed slit-plate ((c) and (d)) as a
function of Mach number, for fixed frequency values and ν = 0.1. For (c) and (d), lc = 0.5m.

Figure 4 (a) and (b) reinforces the conclusions we drew
from Fig. 3 (a) and (b) i.e., |Rsp| and ∆sp are almost
constants across frequencies for the different M values.
In Fig. 4 (c) and (d), we notice that, for the cavity-backed
slit-plate, the |RL| decreases with increasing f , attains a
minimum and then increases, while ∆L increases initially,
reaches a maximum and then decreases. Across M values,
|Rsp| and ∆sp increases with increasing M (Fig. 4 (a) and
(b)), whereas |RL| decreases with increasing M and ∆L

increases with increasing M (Fig. 4 (c) and (d)).

In order to achieve complete absorption of an acoustic
wave of frequency f , incident normal to the cavity backed
slit-plate, lc must be chosen such that lc = c/(4f) (Dowling
and Hughes (1992)). This means that lc must be a quarter of
the wavelength of the incoming acoustic wave. Assuming a
slit-plate of d = 20mm, ν = 0.1 and f = 170Hz, we require
lc = 0.5m for complete absorption. This is shown in Figs. 3
(c) and (d) and Figs. 4 (c) and (d). Around M = 0.05, RL =
0 and ∆L = 1, indicating complete absorption for 170Hz.
For the same parameters, the maximum absorption attained
by a slit-plate is 0.5 (Dowling and Hughes (1992)). Hence,
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a cavity-backed slit-plate gives much better absorption than
just a slit-plate. The effects of cavity length lc, on |RL|
and ∆L are shown in Fig. 5 (a) and (b) respectively, for 3
frequency values : f = 60, 120 and 170Hz. At lc = 0, the slit-
plate and the backing wall are assumed to overlap, resulting
in a rigid end with complete reflection (|RL| = 1) and no
absorption (∆L = 0). As lc increases, |RL decreases from

1, attains a minimum and then increases to 1 (Fig. 5 (a)).
At this second maximum point, the lc is equal to half the
wavelength of the incident wave. This alternating behaviour
of decreasing and increasing |RL| continues with increasing
lc. However, ∆L exhibits the opposite behaviour. In spite of
this periodic behaviour in ∆L, there is a wide range of lc
values with significant absorption coefficient values.
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Figure 4. Reflection coefficient and absorption coefficient of slit-plate ((a) and (b)) and cavity-backed slit-plate ((c) and (d)) as a
function of Frequencies, for fixed Mach numbers and ν = 0.1. For (c) and (d), lc = 0.5m.
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Figure 5. (a) Reflection coefficient and (b) absorption coefficients of cavity-backed slit-plate, as a function of cavity length, for fixed
frequencies, M = 0.05 and ν = 0.1.

The other parameter that helps us in controlling or varying
the absorptive property of the slit-plate is the open area
ratio (ν). ν is the measure of the porosity of the plate or the
proportion of blockage to the incoming flow. Low values
of ν indicates high blockage and vice versa. For a slit-plate
with bias flow, this implies that with increasing ν values, the
proportion of blockage decreases and the slit-plate becomes
more ‘transparent’ to the acoustic waves. Therefore, the

value of the reflection coefficient ought to decrease with
increasing ν. This trend is shown in Fig. 6 (a) where |Rsp|
is plotted as a function of ν for the Mach numbers M =
0.001, 0.015, 0.05 and 0.1. As for the absorption, increasing
ν values cause reduced interaction between the incident
wave and the vortical structures downstream of the slit-plate.
This causes less interaction between the incident acoustic
energy and the dissipative vortices, leading to decreasing
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∆sp. Figure 6 (b) shows the ∆ for a slit-plate as a function
of ν for M = 0.001, 0.015, 0.05 and 0.1, and we can
observe the decreasing trend in ∆sp for increasing ν values.
Even though there is an initial increase in ∆sp for small
ν values, the maximum absorption achieved is only 0.5.
The reflection and absorption properties of the slit-plate
are greatly improved when we include the rigid backing.
Figures 6 (c) and (d) show the |R| and ∆ of a cavity-backed
slit-plate for M = 0.001, 0.015, 0.05 and 0.1, as a function
of ν. It can be noted from Fig. 6 (c) that except for the
lowest Mach number of 0.001, for all other M values,
the |RL| decreases with increasing ν, reaches a minimum
and then increases. On the other hand, ∆L increases with
increasing ν, attains a maximum of 1 and then decreases
(Fig. 6 (d)). An interesting observation in the |RL| curve
(Fig. 6 (c)) for the cavity-backed slit-plate is the increasing
|RL| trend after attaining the minimum. But, this behaviour
seems counter-intuitive when compared to the behaviour of

a slit-plates with large open area ratios. As explained earlier,
increasing ν values ought to make the slit-plate transparent
and therefore, the reflection coefficient must decrease with
increasing ν values. Here, one must recall that |RL| denotes
the effective reflection coefficient of the cavity-backed
slit-plate, and for a ‘transparent’ slit-plate backed by rigid
wall, the effective reflection coefficient will tend to that of a
rigid wall i.e., |RL| → 1.

In summary, for a given frequency value, the absorption
efficiency of a cavity-backed slit-plate can be maximised
if we choose the appropriate lc, ν and M . In the case of
a combustor with an unstable mode, the frequency of the
unstable mode will be close to the eigenfrequency of the
combustor. Therefore, given a fixed slit-plate dimension,
we must choose the appropriate M and lc to stabilise the
combustor.
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Figure 6. Reflection coefficient and absorption coefficient of slit-plate ((a) and (b)) and cavity-backed slit-plate ((c) and (d)) as a
function of open area ratio, for fixed Mach numbers and f = 170Hz. For (c) and (d), lc = 0.5m.

Stability predictions

For stability predictions, we make use of the eigenvalue
method (Heckl (1985)), which is instrumental in obtaining
the growth rates of different modes in the system. In the
present work, we restrict ourselves to the first mode of the
combustor.

Boundary and jump conditions

The unknowns in our system are the four pressure amplitudes
A, B, C and D. Therefore, we need four homogeneous
equations, obtained from the following boundary and jump
conditions.

At x = 0:

Ae−ik1lf = R0Be
ik1lf . (14)

At x = L:

De−ik2(L−lf ) = RLCe
ik2(L−lf ). (15)

R0 andRL are the reflection coefficients at x = 0 and x = L,
respectively.
Across the heat source (x = lf ), we assume continuity of
pressure,

A+B = C +D , (16)
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and a velocity jump generated by the heat source (Heckl
(1988))

− (A−B)

ρ1c1
+

(C −D)

ρ2c2
=

(γ − 1)

ρ1c21S
Q̂ (lf ) , (17)

where S is the cross-sectional area of the duct and γ is the
ratio of the specific heat capacities.

Eigenfrequencies and growth rates
Equations (14) - (17) can be rearranged in matrix form to
yield:

[Y (Ω)]


A
B
C
D

 =


0
0
0
0

 , (18)

with

lcavity(m)

l h
e
a
t
s
o
u
r
c
e
(m

)
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Figure 7. Stability map, without slit-plate and bias flow

Y (Ω) =


e−i

Ω
c1
lf −R0e

i Ω
c1
lf 0 0

0 0 RLe
i Ω
c2

(L−lf ) −e−i Ω
c2

(L−lf )

1 1 −1 −1(
−1− β1e

iΩτ + β0

) (
1 + β1e

iΩτ − β0

)
ζ −ζ

 , (19)

where β0,1 =
αn0,1(γ−1)

Sρ1c21
is a quantity proportional to the

coupling coefficients, and ζ = ρ1c1
ρ2c2

is the ratio of the specific
impedances.

Solving the characteristic equation, detY (Ω) = 0, using
the Newton Raphson or bisection method, gives us the
eigenfrequencies of the system. The solution Ωm = ωm +
i δm, is a complex quantity where ωm denotes the natural
frequency of the modem and δm its growth rate. Positive δm
indicates instability and negative δm indicates stability.

Stability Maps
From Eq.(19), one can infer that the parameters which affect
the stability of the combustor are: the properties of the
medium inside the duct (ρ1,2, c1,2, T1,2), the duct length (L),
the location of the heat source (lf ), the reflection coefficients
at the boundaries (R0 and RL), the time-lag (τ ), and the
heat source properties (α and n0,1). In addition to these
parameters, cavity length (lc), slit-plate dimensions (d and ν)
and bias flow Mach number (M ) have an indirect influence
throughRL. Here, we consider the influence of the following
three parameters : cavity length, heat source location and bias
flow Mach number. The cold region is assumed to be at room
temperature (T1 = 288 K) and the hot region is assumed to
be at T2 = 1288 K. The duct length L is assumed to be 1 m
and the heat source properties are taken as constants: α =
120m2/s2, n1 = 1.2, n0 = 0.2 and τ = 0.15× 10−3 s.

The stability maps are constructed in the cavity length
(lc) - heat source location (lf ) plane, where the grey regions
indicate instability and the white regions indicate stability.
Stability of the first mode of the system is determined from
the sign of the growth rate, δ1, as mentioned in the previous
section. Firstly, we construct the stability map for a quarter-
wave resonator containing a heat source, but without the slit-
plate. In the absence of the slit-plate, an increase in cavity
length (lc) effectively adds to the duct length, L. The total

length of the resonator will now be (L+ lc). As expected,
the resonator is always unstable (Fig. 7), regardless of the
value of lc or the location of the heat source.

Next, we introduce a slit-plate with bias flow, into the
system. The slit dimensions are d = 0.02m and ν = 0.1.
Surendran and Heckl (2015) modelled a cavity-backed slit-
plate with bias flow to stabilise a combustor having uniform
temperature distribution (T1 = T2 = 288K) and having a
heat source obeying the time-lag law (n1 = 1.2, n0 = 0 and
α = 155.83m2/s2). The stability maps were constructed for
the first mode of the combustor and for different bias flow
Mach numbers. Figure 8 shows the maps for three Mach
numbers, M = 0.001, M = 0.005 and M = 0.01. For M
= 0.001, the stable regime of the combustor was confined
to a small range of lf and lc values (small lf and large lc
values). As M increased, the combustor exhibited increased
stability. Figure 8 (c) shows that for a combustor of length
L = 1m, lc ≈ 0.15m is sufficient to stabilise the first mode
of the combustor, when M = 0.01. The stable regimes of
the combustor can thus be extended by choosing appropriate
bias flow M and lc values. This makes the configuration of
a cavity-backed slit-plate with bias flow, an effective passive
instability controller.

The present study is an extension to the work by Surendran
and Heckl (2015). We modified the time-lag model for
heat release to a more general one that takes into account
the influence of instantaneous velocity fluctuations at the
heat source location and constructed stability maps (in
lf – lc plane) for the modified system, for different M
values (Fig. 9). Even though the stability maps obtained
for the combustor configuration with uniform temperature
and generic heat release law, exhibit the trends observed
by Surendran and Heckl (2015), the unstable regimes are
comparatively larger, for the same M values. This is
plausible because we have included additional fluctuations to
our heat release and these could de-stabilise the combustor.
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As a step further to our study, we also incorporated a
temperature jump across the heat source (T1 = 288K and
T2 = 1288K). The assumption of a temperature jump makes
the combustor more realistic and close to real situations.
The stability maps, again constructed in the lf - lc plane
for 3 Mach numbers: M = 0.001, 0.005 and 0.01, are given

in Fig. 10. Comparison of Fig. 10 and Fig. 9 shows that
having a hot region or temperature non-uniformity within the
combustor tends to de-stabilise it. However, it is still possible
to find a cavity length and Mach number that stabilises the
combustion system.
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Figure 8. Stability maps for different Mach numbers (a) M = 0.001, (b) M = 0.005 and (c) M = 0.01, for a combustor with
uniform temperature and time-lag model for heat release rate. Results from Surendran and Heckl (2015).
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Figure 9. Stability maps for different Mach numbers (a) M = 0.001, (b) M = 0.005 and (c) M = 0.01, for a combustor with
uniform temperature and a generic heat release law.
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Figure 10. Stability maps for different Mach numbers (a) M = 0.001, (b) M = 0.005 and (c) M = 0.01, for a combustor with
non-uniform temperature and a generic heat release law.

Summary and Outlook

Stability analysis was conducted on an existing unstable
mode of a generic combustor with heat exchanger: a quarter-
wave resonator with a heat source and fitted with a slit-plate
near the closed downstream end. Initial observations show
that the unstable mode of the combustor can be stabilised by

choosing the bias flow Mach number and the cavity length
appropriately. Presently, work is in progress to identify and
utilise other potential system parameters to successfully
stabilise the combustor.
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